MATERIAL PROPERTIES

IS0 ΕN DIN

of steel bolts, screws and nuts

Heat treatments

OVERVIEW AND DEFINITIONS OF HEAT TREATMENTS FOR FASTENERS

Heat treatment is the thermal change of the metallographic structure of steel by heating and cooling within a certain time to obtain the required properties.

The most common heat treatments in manufacturing fasteners are:

Annealing 1.

The steel is held at a temperature of just below 721°C for several hours and is then cooled down slowly to make it soft. The structure changes from hard, lamellar perlite into soft, globular perlite resulting in an optimal condition of the raw material for cold heading.

2.

Normalizing (Recrystallization) By heating at 800 - 920 °C for not too a long time and then cooling slowly, a coarse and thus brittle grain structure due to, for instance, hot rolling or hot forging, especially of thicker pieces, is brought back again in the original fine grain structure. Through this refining, yield point and impact strength are increased without the tensile strength being reduced too much.

3. Stress-relieving

By cold deformation internal stresses are induced in the material, increasing the tensile strength but decreasing the elongation. By heating at between 500 and 600°C for a long time and cooling slowly, most of the cold hardening effect disappears. This heat treatment is applied to cold headed bolts and screws of property classes 4.6 and 5.6.

4. Hardening

When steel with a minimum C-content of about 0,3% is heated at a temperature above 800°C (depending on the type of steel) and is quenched in water, oil, air or in a salt bath, the very hard but brittle martensite structure is formed.

The achieved hardness depends on the C% (the higher the carbon, the harder the steel) and the percentage of martensite, which, at a certain critical cooling speed, is formed in the core of the material.

So with thinner bolts from unalloyed carbon steel the critical cooling speed will be reached to the core. However with thicker sizes the heat from the core cannot be transmitted to the outside quickly enough and it will be necessary to add alloying elements like boron, manganese, chromium, nickel and molybdenum, which support the through-hardening i.e. decrease the critical cooling speed.

In general, when a type of steel with such a through-hardening is chosen, about 90% martensite is present in the core after quenching. The choice of cooling medium also influences the cooling speed. Bolts are mainly quenched in oil, because water, which is otherwise more effective, causes too much risk of hardening cracks and warpage.

Martensite structure

5. Tempering

With increasing hardness, however, the hardening stresses will rise, and therefore the brittleness of the material will also increase. Mostly a second heat treatment, called tempering, must follow as quickly as possible after quenching. For temperatures of up to 200°C only the brittleness will decrease a little; the hardness will barely decrease. Above 200°C the stresses decrease, the hardness diminishes and the toughness is improved.

Quenching and tempering 6

This is a combined heat treatment of quenching with high-tempering, at between 340° and 650°C immediately following. This is the most important and most commonly practised heat treatment for fasteners. An optimal compromise is reached between a rather high tensile strength, particularly a high yield/tensile strength ratio and sufficient toughness, which is necessary for a fastener carrying all kind of external forces to function effectively. The higher property classes 8.8, 10.9 and 12.9 are, therefore, guenched and tempered.

7.

Decarburizing By heat treating carbon and alloy steels the danger exists that carbon from the outside

The skin then gets a carbon content that is too low; it is not hardenable and will stay soft.

This means that the screw thread under loading could be slid off. To prevent this, the quenching and tempering of fasteners is always done when the furnace is supplied with a protective gas, which keeps the carbon percentage at the level of the steel type.

Structure after quenching and tempering

15-10-3

15

STANDARD ISO : -EN : -DIN : -

MATERIAL PROPERTIES

for steel bolts, screws and nuts

Heat treatments

8. Case carburizing

This heat treatment is the opposite of decarburizing and is carried out in a carbon emitting gas. On the outside of the product a thin layer with an increased carbon content is built up, through which the skin, after hardening, becomes hard and wear resistant, while the core remains tough. This treatment is applied on fasteners such as tapping screws, thread rolling, thread cutting and self drilling screws and chip board screws. Similar heat treatments are carbonitriding, using carbon and nitrogen, and nitriding, only using nitrogen as an emitting gas.

9. Induction hardening

For special applications a hard, wear resistant layer is formed without the supply of a gas in a high frequency coil with no contact of the workpiece. Mostly only local hardening is executed for the extra protection of weak spots.

15

15-10-4

STANDARD				
iso	: 898 Part 1			
En	: 20898 Part 1			
Din	: -			

MATERIAL PROPERTIES

of steel bolts, screws and studs

Chemical composition

In the table below a specification is given of the steels for the standardized property classes of bolts, screws and studs. The minimum tempering temperatures are mandatory in all cases.

The chemical composition limits are mandatory only for those fasteners, which are not subject to tensile testing.

Property class	Material and treatment	che	emical com (check ar	position lir alysis) %	nits	Tempering temperature	of col	Examples mmonly used steels
		(2	Р	S		·'	
		Min.	max.	max.	max.	min.	Size	Steel designation
3.6 ¹)		-	0,20	0,05	0,06		≤ M39	QSt36-2
4.6 ¹)		-	0,55	0,05	0,06		≤ M39	QSt36-2, QSt38-2
4.8 ¹)						-	≤ M16	QSt36-2, QSt38-2
5.6	Carbon steel	0,15	0,55	0,05	0,06		≤ M39	Cq22
5.8 ¹)		-	0,55	0,05	0,06		≤ M39	Cq22, Cq35
6.8 ¹)							≤ M39	Cq35, 35B2, Cq45
8.8 ²)	Carbon steel with additives (e.g. Boron	0,15 ³)	0,40	0,035	0,035		≤ M12	22B2, 28B2
	or Mn or Cr), quenched and tempered						≤ M22	35B2, Cq35, Cq45
	or					425	$M24 \le M39$	34Cr4, 37Cr4
	Carbon steel, quenched and tempered	0,25	0,55	0,035	0,035			
9.8	Carbon steel with additives (e.g. Boron	0,15 ³)	0,35	0,035	0,035			
	or Mn or Cr), quenched and tempered					125		
	or					420	-	-
	Carbon steel, quenched and tempered	0,25	0,55	0,035	0,035			
<u>10.9</u> 4)	Carbon steel with additives (e.g. Boron	0,15 ³)	0,35	0,035	0,035		\leq M6	35B2, Cq35
	or Mn or Cr), quenched and tempered					340		
10.9 5)	Carbon steel, quenched and tempered	0,25	0,55	0,035	0,035		$M8 \le M18$	34Cr4
	or						≤ M39	41Cr4, 34CrMo4, 42CrMo4
	Carbon steel with additives (e.g. Boron	0,20 ³)	0,55	0,035	0,035			
	or Mn or Cr), quenched and tempered					425		
	or							
	Alloy steel, quenched and tempered 7)	0,20	0,55	0,035	0,035			
12.9 ⁵), ⁶)	Alloy steel, quenched and tempered ⁷)	0,20	0,50	0,035	0,035	380	≤M18 ≤ M24 ≤ M39	34CrMo4, 37Cr4, 41Cr4 42CrMo4 34CrNiMo6

¹) Free cutting steel is allowed for these property classes with the following maximum sulphur, phosphorus and lead contents: sulphur: 0,34%; phosphorus 0,11%; lead 0,35%.

²) For nominal diameters above 20 mm the steels specified for property class 10.9 may be necessary in order to achieve sufficient hardenability.

³) For plain carbon boron alloyed steel with a carbon content below 0,25% (ladle analysis), the minimum maganese content shall be 0,6% for property class 8.8 and 0,7% for property classes 9.8 and 10.9.

4) Products shall be further identified by underlining the symbol of the property class.

⁵) For the materials of these property classes, it is intended that there should be a sufficient hardenability to ensure a structure consisting of approximately 90% martensite in the core of the threaded sections for the fasteners in the "as-hardened" condition before tempering.

⁶) A metallographically detectable white phosphorus enriched layer is not permitted for property class 12.9 on any surface subjected to tensile stress.
 ⁷) Alloy steel shall contain one or more of the alloying elements chromium, nickel, molybdenum or vanadium.

15-10-5

ISO : – EN : – DIN : 267 Pa	ARD art 4 (W)	MATERIAL PROPERTIES of steel "DIN" nuts Chemical composition									
n the tables below	v a specification	is given of the stee	els for the standa	rdized property clas	sses of "DIN" nu	ts e.g. hexagon nuts	s DIN 555 en DIN				
 NON-CUTTIN The chemical 	G WORKING	this table shall also	apply to working	by chip removal w	here free-cuttin	a steel is not beina i	used.				
		Chemical composition in % hy mass (check analysis) 1)									
		Property class	С	Mn	S						
			max.	min.	max.	max.					
		4, 5 and 6	0,50	- 0.30	0,110	0,150					
		10	0,58	0,30	0,000	0,058					
	1) 011	12	0,58	0,45	0,048	0,058					
	<u>) Chi</u>	ps for the check analy	ysis shall be taken	uniformly over the wh	nole cross section	·	.				
classes 10 and	d 12. FROM FREE-C	SS 12 Shall be hald	eneu anu temper	eu. II Hetessaly, al	ivy sieers shall l		turing nuts of prop				
		Property class	Chemic C	cal composition, in %	(by mass (check Pb	analysis) ¹) S					
		5 AU and 6 AU	0,50	0,12	0,35	0,34					
	¹) C	hips for the check and	alysis shall be taker	n uniformly over the v	whole cross sectio	n.					
Hexagon nuts 6 AU shall be	in accordance specially marke	with DIN 555, DIN 9 d as specified on p	934 and slotted ca age 15-5-4, where	astle nuts in accord e they are made fro	lance with DIN 9 om free-cutting s	35 assigned to prop teel with the chemic	erty classes 5 AU al composition ab				
	ISO : 898 Part 2 EN : 20898 Part 2 DIN : -		MATERIAL PROPERTIES of steel "ISO" nuts Chemical composition								
<u>STANDA</u> ISO : 898 F EN : 2089 DIN : –	Part 2 8 Part 2		of s Che	mical compo	sition						
SIANDA ISO : 898 F EN : 2089 DIN : –	Part 2 8 Part 2 a specification i	s given of the steels	of s Che for the standardiz	mical compo	sition	e.g. hexagon nuts IS	0 4032 and ISO 4				
SIANDA ISO : 898 F EN : 2089 DIN : –	Part 2 8 Part 2 a specification i	s given of the steels	of s Che for the standardiz	mical compo zed property classe mits (check analysis)	sition	e.g. hexagon nuts IS Ex of commo	O 4032 and ISO 4				
SIANDA ISO : 898 F EN : 2089 DIN : -	Part 2 8 Part 2 a specification i	s given of the steels Chen	of s Che for the standardiz nical composition lin Mn	mical compo zed property classe mits (check analysis) P	sition s of "ISO" nuts, e , % S	e.g. hexagon nuts IS Ex of commo for co	O 4032 and ISO 4 amples nly used steels old forming				
SIANDA ISO : 898 F EN : 2089 DIN : - In the table below a Property	Part 2 8 Part 2 a specification i	s given of the steels	of s Che for the standardiz nical composition lin Mn min.	mical compo zed property classe mits (check analysis) P max.	sition s of "ISO" nuts, e , % S max.	e.g. hexagon nuts IS Ex of commo for co Size	O 4032 and ISO 4 amples nly used steels old forming				
STANDA ISO : 898 F EN : 2089 DIN : - In the table below a Property 4 ''), 5 ''), 6 ''	a specification i	s given of the steels Chen C max. 0,50	for the standardiz	mical compo zed property classe mits (check analysis) P max. 0,110	sition s of "ISO" nuts, e , % S max. 0,150	e.g. hexagon nuts IS Ex of commo for co Size all	O 4032 and ISO 4 amples nly used steels old forming steel designatic OSt36-2 OSt36-2				
SIANDA ISO : 898 F EN : 2089 DIN : - In the table below a Property 4 '), 5 '), 6 ') 8, 9	Part 2 8 Part 2 a specification i y class - 04 1)	s given of the steels Chen C max. 0,50 0,58	for the standardiz	mical compo zed property classe mits (check analysis) P max. 0,110 0,060	sition s of "ISO" nuts, e , % S max. 0,150 0,150	e.g. hexagon nuts IS Ex of commo for co Size all ≤M16	O 4032 and ISO 4 amples nly used steels old forming steel designation QSt36-2 QSt36-2 Cq 22				
SIANDA ISO : 898 F EN : 2089 DIN : - In the table below a Property 4 ''), 5 ''), 6 '' 8, 9 10 '')	Part 2 8 Part 2 a specification i y class - 04 ¹) 05 ²)	s given of the steels Chen C max. 0,50 0,58 0,58	for the standardiz	mical compo zed property classe mits (check analysis) P max. 0,110 0,060 0,048	sition es of "ISO" nuts, e , % S max. 0,150 0,058	e.g. hexagon nuts IS Ex of commo for co Size all ≤M16 >M16	O 4032 and ISO 4 amples nly used steels old forming Steel designatic OSt36-2 OSt36-2 Cq 22 Cq 25 Cq 35				
SIANDA ISO : 898 F EN : 2089 DIN : - In the table below a Property 4 ''), 5 ''), 6 '') 8, 9 10 '') 12 '') 12 '')	Part 2 8 Part 2 a specification i y class - 04 ¹) 05 ²) -	s given of the steels Chen C max. 0,50 0,58 0,58 0,58	for the standardiz	mical compo zed property classe mits (check analysis) P max. 0,110 0,060 0,048 0,048	sition s of "ISO" nuts, e , % S max. 0,150 0,150 0,058 0,058	e.g. hexagon nuts IS Ex of commo for co Size all ≤M16 >M16 all	O 4032 and ISO 4 amples nly used steels old forming Steel designation QSt36-2 QSt36-2 Cq 22 Cq 35 Cq 35 Cq 45				